
Programming Objects with C++, Advanced

Description

The course starts with basic OO concepts, and then a quick introduction to the language. Except OOP, topics
covered include Templates, Standard Template Library (STL) and Exceptions. The course also covers some
advanced Object-Oriented design techniques in C++ such as Design Heuristics, Design by Contract, Interfaced-
based programming, Composition and Delegation Patterns, Memory Management and Smart Pointers,
Subtyping, Design for efficiency and Meta programming in C++.

Classroom Registration Price (CHF)
3800
Virtual Classroom Registration Price (CHF)
3550
Course Content
Module 1: Language History and C++11/14

Lesson 1: History of C++
Lesson 2: Versions
Lesson 3: New in TR1
Lesson 4: New in C++11
Lesson 5: New in C++14

Module 2: Language Review and Best Practice: Part I

Lesson 1: Object-Oriented Programming
Lesson 2: Constructors and Destructors
Lesson 3: New and delete

Module 3: Basic Inheritance

Lesson 1: Interface vs. Implementation
Lesson 2: Type Inheritance
Lesson 3: Implementation Inheritance
Lesson 4: Proper Use of C++11 final and override
Lesson 5: Virtual Destructors: When and Why?
Lesson 6: Inheritance Guidelines

Module 4: Correct Use of Well Known Language Features

Lesson 1: Pointers vs. References vs. Value
Lesson 2: Proper Use of const
Lesson 3: Proper Use of Inline Functions
Lesson 4: Proper Use of static
Lesson 5: Proper Use of Default Parameters
Lesson 6: Proper Use of friend
Lesson 7: Proper Use of namespace
Lesson 8: The C++ Way to Cast
Lesson 9: Proper Use of Operator Overloading

ITTA (IT TRAINING ACADEMY SA)
Visit us at itta.net

Page 1
© Copyright ITTA – All contents are protected by copyright.



Lesson 10: Copy Constructor: Why/When?
Lesson 11: Assignment Operator: Why/When?
Lesson 12: The Law of The Big Three

Module 5: Exceptions

Lesson 1: Lessons from Traditional Error Handling
Lesson 2: Object-Oriented Error Handling
Lesson 3: Throw, try and catch
Lesson 4: Design of Exception Hierarchies
Lesson 5: Proper use of Rethrow
Lesson 6: using unexpected
Lesson 7: Exception Pitfalls
Lesson 8: Exception Guidelines

Module 6: Templates

Lesson 1: Template Classes Definition
Lesson 2: Template Classes Implementation
Lesson 3: Parametrized Classes
Lesson 4: Templates and Non-Type Parameters
Lesson 5: Template Guidelines
Lesson 6: Templates and Plain Functions
Lesson 7: C++ Template Function

Module 7: Standard Template Library (STL)

Lesson 1: STL String
Lesson 2: STL Components
Lesson 3: Sequence Containers
Lesson 4: Use of Iterators in STL
Lesson 5: Example of Algorithms
Lesson 6: Initialization of Containers
Lesson 7: Performance Profiles of Sequence Containers

Module 8: STL Algorithms

Lesson 1: STL vs Boost
Lesson 2: Parameterization of Algorithms
Lesson 3: Using Functions
Lesson 4: Using Function Objects
Lesson 5: Using Lambda Expressions
Lesson 6: Library of Selected Algorithms
Lesson 7: Contributing Algorithms

Module 9: STL Associative Containers

Lesson 1: Set
Lesson 2: Multiset
Lesson 3: Map
Lesson 4: Multimaps

ITTA (IT TRAINING ACADEMY SA)
Visit us at itta.net

Page 2
© Copyright ITTA – All contents are protected by copyright.



Module 10: STL Functors, Allocators and More

Lesson 1: Standard Exception
Lesson 2: Functors
Lesson 3: Library Provided Function Objects
Lesson 4: Using STL Function Objects and Binders
Lesson 5: Negators
Lesson 6: Allocators
Lesson 7: Complex Number
Lesson 8: Smart Pointers

Module 11: Efficiency: Temporary Objects

Lesson 1: Temporary Objects: The Problem
Lesson 2: Various Techniques to Avoid Temporaries
Lesson 3: STL String: How to Avoid Creation of Temporaries
Lesson 4: C++11: Move Semantics
Lesson 5: Miscellaneous Techniques to Avoid Temporaries

Module 12: Memory Management

Lesson 1: How Does C++ Use Memory?
Lesson 2: Basic Guidelines
Lesson 3: Implementation of Singletons in C++
Lesson 4: Efficient Use of Smart Pointers
Lesson 5: Overloading new and delete
Lesson 6: Memory Management
Lesson 7: How Does C++ Use Memory?
Lesson 8: Basic Guidelines
Lesson 9: Implementation of Singletons in C++
Lesson 10: Efficient Use of Smart Pointers
Lesson 11: Overloading new and delete
Lesson 12: The Importance of Data Layout

Module 13: Hot vs. Cold Memory

ITTA (IT TRAINING ACADEMY SA)
Visit us at itta.net

Page 3
© Copyright ITTA – All contents are protected by copyright.



Lesson 1: Miscellaneous Efficiency Techniques
Lesson 2: Design Concerns
Lesson 3: Flexibility vs Performance
Lesson 4: Lazy Evaluation
Lesson 5: Eager Evaluation
Lesson 6: Copy on Write Techniques
Lesson 7: Data Layout Revisited
Lesson 8: Modern Hardware and Cache Pipelines
Lesson 9: The Effect of Data Structures and Algorithms
Lesson 10: Postcondition and C++
Lesson 11: Efficiency Profiles of Libraries
Lesson 12: STL and Performance
Lesson 13: Latency
Lesson 14: Cost and Benefits of Threads
Lesson 15: Asynchronous Programming
Lesson 16: Futures

Module 14: Delegation

Lesson 1: Concept of Delegation
Lesson 2: Delegation in C++
Lesson 3: Simple Delegation
Lesson 4: Static Delegation
Lesson 5: Superclass Delegation
Lesson 6: Subclass Delegation
Lesson 7: Issues With Subclass Delegation in C++
Lesson 8: Object Delegation
Lesson 9: Strategy Pattern
Lesson 10: C++ and Strategy
Lesson 11: State Pattern
Lesson 12: C++ and State
Lesson 13: Design of Composite
Lesson 14: Composite and Delegation
Lesson 15: Other Delegation Patterns

Module 15: Decoupling

Lesson 1: What is Coupling?
Lesson 2: Kinds of Coupling
Lesson 3: Identity Coupling
Lesson 4: Identity Coupling: Object Lifetimes
Lesson 5: Change of Identity
Lesson 6: Type Coupling
Lesson 7: Implementation Coupling
Lesson 8: Interfaces and Implementations
Lesson 9: Decoupling by Example

Module 16: Advanced Inheritance

Lesson 1: Multiple Inheritance of Interfaces
Lesson 2: Multiple Inheritance of Implementation

ITTA (IT TRAINING ACADEMY SA)
Visit us at itta.net

Page 4
© Copyright ITTA – All contents are protected by copyright.



Lesson 3: Shared Properties
Lesson 4: Resolving Ambiguity
Lesson 5: Virtual Inheritance
Lesson 6: Multi Methods
Lesson 7: Double Dispatch
Lesson 8: Use of RTTI
Lesson 9: Rules and Guidelines
Lesson 10: Inheritance of Baseclass Methods
Lesson 11: Change of Methods
Lesson 12: Contracts and Inheritance
Lesson 13: Contracts and Subtyping
Lesson 14: Variations of Method Arguments
Lesson 15: Rules for Method Arguments
Lesson 16: Rules for Changing Return Types
Lesson 17: Cancellations of Methods

Module 17: Design Heuristics

Lesson 1: Object-Oriented Design Guidelines
Lesson 2: Reflecting Client's View
Lesson 3: Polling
Lesson 4: Express Interfaces Through Objects
Lesson 5: Value Objects
Lesson 6: Class Invariants
Lesson 7: Abstract Base Classes
Lesson 8: Classes and Interfaces
Lesson 9: Design Interfaces Between Base and Derived Classes
Lesson 10: Classes Cohesiveness

Lab / Exercises

During the course participants are encouraged to actively participate in the learning experience by running
example files during lectures and performing coding challenges during labs. Each lab session allows you
to compare your solution to the instructor's

Documentation

Digital courseware included

Participant profiles

Application developers
Programmers
System Designers

Prerequisites

Having followed or have knowledge covered by: Programming Objects with C++ Fundamentals

Objectives

Apply advanced concepts of OO designs
Be able to write and maintain C++ programs
Write robust, maintainable, elegant and efficient C++ code

ITTA (IT TRAINING ACADEMY SA)
Visit us at itta.net

Page 5
© Copyright ITTA – All contents are protected by copyright.

/en/trainings/programming-objects-with-c-fundamentals


Be able to deploy good C++ programming practices
Be able to use the advanced features of the C++ programming language
Be able to implement advanced Object-Oriented techniques in C++ to realize efficient and flexible
applications
Leave with skills needed to develop industrial C++ applications

Niveau
Avancé
Duration (in Days)
5
Reference
CPP-02

ITTA (IT TRAINING ACADEMY SA)
Visit us at itta.net

Page 6
© Copyright ITTA – All contents are protected by copyright.


